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SUMMARY

This paper is to continue our previous work Niu (Int. J. Numer. Meth. Fluids 2001; 36:351–371) on solving
a two-fluid model for compressible liquid–gas flows using the AUSMDV scheme. We first propose a
pressure–velocity-based diffusion term originally derived from AUSMDV scheme Wada and Liou (SIAM
J. Sci. Comput. 1997; 18(3):633—657) to enhance its robustness. The scheme can be applied to gas and
liquid fluids universally. We then employ the stratified flow model Chang and Liou (J. Comput. Physics
2007; 225:240–873) for spatial discretization. By defining the fluids in different regions and introducing
inter-phasic force on cell boundary, the stratified flow model allows the conservation laws to be applied
on each phase, and therefore, it is able to capture fluid discontinuities, such as the fluid interfaces and
shock waves, accurately. Several benchmark tests are studied, including the Ransom’s Faucet problem, 1D
air–water shock tube problems, 2D shock-water column and 2D shock-bubble interaction problems. The
results indicate that the incorporation of the new dissipation into AUSM+-up scheme and the stratified
flow model is simple, accurate and robust enough for the compressible multi-phase flows. Copyright q
2008 John Wiley & Sons, Ltd.
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INTRODUCTION

In many industrial mechanisms, fluids usually appear in states of multiple phases or components.
One could classify them according to the states of different phases or components such as the
so-called gas–solid, liquid–solid, gas–particle or bubbly flows, and so on. These multi-phase flows
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are widely seen in engineering applications such as the power cooling system, fuel transport
system, underwater cavitation problems and droplet erosion problems. For example, as we know, in
the cooling system within the convectional nuclear reactor, the high-pressure water is transported
through pipes and pumps. Once a break occurs in the pipe, there will be a sudden depressurization
and the water will begin to evaporate, hence presenting a very high risk to damage the systems.
Clearly, the capability to predict the flow behavior of these processes is a very important subject
in modern industry.

One widely accepted approach to fluids containing individual particles, droplets or bubbles is
through the so-called two-fluid model, in which the time or space ensemble average process is
applied to both continuous and disperse phases [1, 2]. Two sets of Navier–Stokes equations are used
to describe both phases of fluids with additional inter-phasic terms for the exchange of momentum
and energy between phases. Since each phase has its own velocity and temperature, the two-fluid
model allows both mechanical and thermal non-equilibriums to be taken into account, and in that
respect, it represents a more general model for two-phase flows.

However, the two-fluid model also brings difficulties for numerical simulation. One of the
issues is its non-hyperbolicity, making the system an ill-posed problem, which can be presented as
numerical instability. Additional terms or assumptions, such as the interfacial pressure force [3],
virtual mass force [4] and the two-pressure model [5], have to be used to render the system of
equations hyperbolic. Even though the system is hyperbolic, it is difficult to derive the analytical
form of its eigensystem. Hence, this disadvantage prevents it from being solved by some modern
upwind schemes.

Another concern is the appearance of the fluid interface that always considers the large disparity
in materials’ properties (about almost 5 times difference in sound speed and 1000 times difference
in density between water and air), it demonstrates considerable difficulty in numerical simulation.
Different from other interface tracking methods, such as the level set method [6] and volume of
fluid method [7, 8], which use auxiliary transport function to track the fluid interface, however,
the two-fluid model [5, 9, 10] treats the interface as a weak solution in the fluid. The interface
is captured by ensuring the conservation law. The problem is that the two-fluid model is not in
conservative form. The presence of non-conservative terms in momentum equations can cause
the solution to oscillate in the vicinity of interface. It requires some non-standard discretization
methods to ensure the exact capturing of the interface.

In this paper, we will continue our studies in using the AUSM-family scheme to solve the multi-
phase flows. The AUSM+ scheme proposed by Liou [11] is well known to be as accurate as Roe’s
or Osher’s approximate Riemann solvers without the cost of field-by-field wave decompositions,
which makes it amenable to the two-fluid model since its eigensystem is difficult to be expressed
in analytical form. Of particular importance is the capability of the scheme to capture contact
discontinuities exactly, thereby making the scheme very attractive for resolutions of fluid interfaces.

Edwards et al. [12] first extended the AUSM+ scheme to solve multi-phase flow based on
a homogeneous mixture model, which assumes that all phases are in kinematics and thermody-
namic equilibrium and use one set of Navier–Stokes equations. The extension utilizes additional
dissipation terms obtained from the early AUSMDV scheme by Wada and Liou [13] to enhance
its stability in low Mach number flow. The scheme is classified as AUSM+-up scheme for the
extra velocity and pressure dissipation terms. Niu [8, 9] later implemented the AUSMDV scheme
to solve a seven-equation two-fluid model involving two sets of Navier–Stokes equations and
one non-conservative transport equation for volume fraction. It is found that the non-conservative
transport equation can easily cause unwanted numerical instability and errors. Based on that, the
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efforts embarked on the modification of the AUSM-type scheme to solve the two-fluid model are
still continued. The first successful work was performed by Paillère et al. [14] on the six-equation
two-fluid model using modified AUSM+ scheme. Subsequently, Chang and Liou [10, 15] proposed
the AUSM+-up scheme incorporating with the stratified flow model to discretize the system equa-
tions. The stratified flow model was suggested by Stewart and Wendroff [16]. It was noted that
the governing equations for the stratified flows are equivalent to those of the two-fluid model
under certain conditions. By considering fluids as immiscible and being separated from each other,
it makes the stratified flow model more preferable for the finite volume method, since we can
apply conservative law to each fluid simultaneously. Their approach demonstrates robustness and
high-order accuracy in their benchmark cases. However, they used the exact Riemann solver to
calculate the numerical fluxes between different fluids. Since the exact Riemann solver requires
extensive iterations, it is much more CPU time consuming than other methods, especially when
stiff EOS of fluid (such as the stiffened gas model for water) is used.

Besides, in our previous study on the mixture model [8, 9], it is found that we can enhance
the resolution of the fluid interface and pressure waves within liquid phase by adding some extra
pressure–density ratio terms [13] to the original AUSM+-up scheme. In this study, we would like
to replace the exact Riemann solver by the new AUSM+-up scheme. We expect that the new
scheme can effectively improve the efficiency and still be as robust and accurate as using the exact
Riemann solver. Several benchmark test problems, including the Ransom’s faucet problem [17],
1D air–water shock tube problems and a 2D gaseous shock-water column interaction problem,
will be chosen for validation.

NUMERICAL MODELS

In this section, the system equations of the two-fluid model are described. The related spatial and
time discretization of the model equations solved by the new AUSM+-up scheme is also introduced.
A detailed discussion on the stratified flow method can be found in Chang and Liou [10].
Governing equations

Here, the single pressure six-equation models expressed in the hyperbolic form [14, 15] is
�U
�t
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whereU is the vector of conserved variables, E is the corresponding convective flux vector and S is
the vector of the interfacial source terms including the interface pressure correction terms, gravity
and the interfacial drag term Fd

k with k=g, l. The subscripts g and l represent the gas and liquid
phases, respectively. Also, the interfacial drag term considers the drag caused by the momentum
exchange between two phases. � stands for the phase volume fraction, and �, u and E are density,
velocity and total energy for each phase, respectively. The total energy Ek =ek+ 1

2uk , where e
is denoted by the internal energy. The enthalpy H =E+ p/�. Here, we neglect viscous terms,
also assuming that no phase change occurs between the air and the liquid phases. The interfacial
pressure pint was originally used to resemble the averaged pressure over the particle surface in
dispersed flows (particulate or bubbly flows). It can be expressed in a general form as in [14] like:

pint= p−�
�g�g�l�l

�g�l +�l�g
(ug−ul)

2 (3)

where it is designed to make the system equations to be hyperbolic and well posed when the
constant �� 1 as suggested by Stuhmiller [3] for low-speed flows. Recently, the work of Chang
et al. [18] pointed out the necessary conditions for hyperbolic system for high-speed flow. In their
paper, it is noted that �=2 is adequate for most of test cases. Also, the interface drag terms are
chosen as

Fd
g =C f �g(�g−1)�g(ug−ul) and Fd

l =−Fd
g

with a positive constant C f (1/s). Here, we used C f as 10−6 to weaken the numerical instability
which may be produced from the drag force.

In this work, the system equations are closed by equations of states, and the gas and liquid
fluids are governed by the perfect gas and stiffened gas models, respectively.

Equation of state

For the gas phase,

Pg =�g RgTg, eg = Rg

�g−1
Tg (4)

Here, the parameters used for specifying the thermodynamic properties of vapor are

�g =1kg/m3, �g =1.4, Rg =288.2kg/K

and the speed of sound is

ag =
(

�g P

�g

)1/2

(5)

For the water, the stiffened gas model proposed by Harlow and Amsden [19] is adopted as

pl = �l −1

�l
�lCplTl − p∞, el = Cpl

�l
Tl + p∞

�l
(6)

and the speed of sound is

al =
(

�l(pl + p∞)

�l

)1/2

(7)
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Here, the parameters used for specifying the thermodynamic properties of water are determined
to meet the following criteria. When Tl =293.15K and P=1.0132×105 Pa, we set the following
properties based on the data:

�l =1.932, Cpl =8095.08J/kgK, P∞ =1.1645×109 Pa

Note that the existence of the huge constant p∞ represents a very weak link between pressure
and density function. The density will remain almost unchanged even when a very big pressure is
applied. Therefore, how to enhance the coupling between pressure and density field is a key point
to achieve accurate modeling of low-speed compressible liquid flow.

Before performing numerical flux calculations, we need to know the primitive variable as

V =
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(8)

The transformation matrix between the vectors of the primitive and conservative variables can
be expressed as V =�(U ) based on

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�g�g

�l�l

�g�gug

�l�lul

�g�gEg

�l�l El

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

After solving the non-linear system equation �(U )=0, we can have
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(10)

with

U1=�g�g(p,T ) (11)

and

U2=(1−�g)�l(p,T ) (12)

To achieve the common pressure between different phases, we can substitute (11) into (12)
to eliminate �g; also substituting into Equations (4) and (6), a non-linear equation F(p)=0 is
achieved as

p2+[�l p∞−U1(�g−1)eg−U2 p(�l −1)el ]p−U1(�g−1)eg�l p∞ =0 (13)
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The pressure can be easily obtained by solving Equation (13) based on the Newton–Raphson
iteration method. Then the volume fractions of both phases can be achieved after the pressure is
known as

�g = U1(rg−1)eg
p

(14)

and

�l =1−�g (15)

Also, the density of each phase can be achieved differently as

�g = U1

�g
(16)

and

�l =
U2

�l
(17)

Finally, the temperature of each phase can be computed as follows:

Tg = rg−1

Rg
eg (18)

and

Tl = rlel(p+ p∞)

Cp(p+rl p∞)
(19)

Spatial and time discretization

For spatial discretization, the primitive variables on the cell interface are determined through
the MUSCL-type approach with TVD minmod limiter, which can provide second- or third-order
spatial accuracy [8]. In this paper, we found that there was no notable difference between solutions
obtained from second- or third-order scheme. Only the interpolation results with the third-order
spatial accuracy are presented. Once the primitive variables on the left and right of the cell interface
are determined, we use the new AUSM+-up scheme to calculate the numerical fluxes across the
interface. The details of the new AUSM+-up scheme are described in the following section.

Next, the TVD-type Rung–Kutta time marching method [20] is chosen to perform the time
integration. Referring to the governing equations, it can be proceeded as
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4Q
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where

Qk =

⎛
⎜⎜⎝
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⎞
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where k=g, l and the superscript ‘s’ in psint indicates the sub-step in the Runge–Kutta method. It
should be cautioned to use the same psint everywhere within each sub-step to hold the conservation
law. Otherwise, auxiliary oscillation in pressure field will be generated.

AUSM+-up scheme

The basic ideal for the AUSM+ scheme is to split the numerical flux into convection and pressure
fluxes. Then a flux difference scheme is used to calculate the convection flux, and a flux splitting
scheme is used for the pressure flux. We can express the numerical fluxes as

F= fcv +fp

= a1/2m1/2�L/RwL/R+
⎛
⎜⎝

0

p1/2

0

⎞
⎟⎠ (23)

and

w=(1,u,uH)T (24)

The subscript ‘L/R’ means the variables are chosen in an upwind manner. For example, if m1/2�0,
then �L/R=�L; otherwise �L/R=�R. The a1/2 is the mean speed of sound. Here we simply use
simple average:

a1/2= 1
2 (aR+aL) (25)

Then we can define the Mach number for left and right states:

ML= uL
a1/2

and MR= uR
a1/2

(26)

The splitting functions m1/2 and p1/2 are defined as

m1/2=M+
(4)(ML)+M−

(4)(MR) (27)

p1/2= P+
(5)(ML)+P−

(5)(MR) (28)
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with

M±
(4)(M)=

{
±(M±1)2±(M2−1)2, |M |<1

M±
(1)(M) otherwise

(29)

P±
(5)(M)=

{
1
4 (M±1)2(2∓M)± 3

16M(M2−1)2, |M |<1

(1/M)M±
(1)(M) otherwise

(30)

and

M±
(1)(M)= 1

2 (M±|M |) (31)

where the subscripts ‘(1)’, ‘(4)’ and ‘(5)’ mean the orders of the polynomial of the splitting
functions.

The AUSM+ scheme has been proven to be very robust and accurate for compressible gas
flows. However, in order to remove the odd–even decoupling errors at low-speed flows simulation,
the AUSM+ scheme was modified by adding two pressure–velocity-based dissipation terms to
enhance the coupling between pressure and density field [12]. The same idea was later applied to
solve compressible liquid flows [15]. The AUSMDV can be expressed in the AUSM+-up scheme
(‘-up’ indicates the pressure- and velocity-based dissipation terms) as

F=(a1/2m1/2�L/R+Dp)wL/R+
⎛
⎜⎝

0

p1/2+Du

0

⎞
⎟⎠ (32)

with

Dp = �L�R
pL�R+ pR�L

[
(�M+(ML)−�M−(MR))(pL− pR)

+(�M+(ML)+�M−(MR))(pL+ pR)

]
(33)

Du =P+
(5)(ML)P−

(5)(MR)�1/2a1/2(uL−uR) (34)

and

�M±(M)=(M±
(4)(M)−M±

(1)(M)) (35)

We should point out here that the dissipation terms Dp and Du are designed to imitate the
dissipation terms of the AUSMDV scheme proposed byWada and Liou [13]. The above formulation
(Equations (32)–(35)) had been implemented in [12]. Incorporating with time pre-conditioning
method, the accuracy and robustness in solving all-speed gas flow problems are demonstrated. It
is noted that the pre-conditioning technique is necessary to ease the stiffness of the eigensystem
when Mach number approaches zero. Later Chang and Liou [15] proposed other forms of Dp
and Du which allow the scheme to work on very stiff system, such as water flows governed by
stiffened gas model without using time preconditioning. They gave

Dp =�p
�M·max(1−M

2
,0) ·(pL− pR)

a1/2
(36)

Du =�uP+
(5)(ML)P−

(5)(MR)�1/2a1/2(uL−uR) (37)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:879–896
DOI: 10.1002/fld



TWO-FLUID APPROACH FOR COMPRESSIBLE MULTI-PHASE FLOWS 887

with

�M = M+
(4)(ML)−M+

(1)(ML)−M−
(4)(MR)+M−

(1)(MR)

= �M+(ML)−�M−(MR) (38)

and

M= 1
2 (ML+MR) (39)

Usually the coefficients �p =�u =1 are chosen for most of the cases. The above scheme
(Equation (32), (36) and (37)) shows very good capability to capture pressure wave in either gas or
liquid flows. However, it gives auxiliary oscillation when large disparity of material properties is
present between both sides of the interface [15], such as the resolution of the gas–liquid interface.
Therefore, Chang and Liou [10] suggested using the exact Riemann solver to calculate the numer-
ical fluxes across the gas–liquid interface and it showed very good results in simulating flows with
complex shock-interface interactions. The only problem is that the exact Riemann solver needs
extensive iterations, hence making it very time consuming.

In order to avoid using the exact Riemann solver, we keep trying to enhance the stability of
AUSM+-up scheme and wish the same scheme can be applied to all the gas–gas, liquid–liquid
and gas–liquid interfaces consistently. First, we find if we replace the Mach splitting function m1/2
defined in Equation (27) by

m1/2=M+
(1)(ML)+M−

(1)(MR) (40)

we can enhance the dissipation when M approaches zero.§ Next we take part of the pressure
dissipation Dp of Equation (32) and rewrite it as

Dp = �L�R
pL�R+ pR�L

�M·max(1− int(M
2
),0) ·(pL− pR) (41)

where the function int(·) is the so-called integer truncated function that transforms the real number
into a biggest integer number smaller than it. This slight modification on mass flux can work very
well on either pure gas, pure liquid or gas–liquid flows at every transient states [21].

NUMERICAL APPLICATIONS

Ransom’s faucet problem

We consider a simplified faucet flow problem proposed by Ransom [17]. As shown in Figure 1,
the water ‘faucet’ problem consists of a liquid stream with a fixed inflow rate of water at a velocity
of 10.0(m/s), temperature of 300K and a liquid volume fraction of 0.8 entering a vertical tube
12.0m in length and 1.0m in diameter from the top. Owing to the action of gravity, the water
falls to form a stream of uniformly decreasing cross-section. The bottom of the tube is opened to
the ambient pressure. Also simple extrapolations of inflow and outflow boundary conditions are
applied. Wall fraction and inter-phasic friction are not considered in this case.

§ It can be shown that the numerical dissipation of the convection flux in Equation (23) changes from O(M2) to
O(M) when using the splitting function of Equation (40) instead of Equation (27).
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Figure 1. Illustration of Ransom’s water faucet problem.

As we know, Ransom’s problem is a widely used benchmark test to verify the accuracy of the
two-fluid models and schemes. The previous works [9, 12, 14, 22] on the computations of this
problem always generated smeared or oscillatory wavefront of void fraction. Chang and Liou
[10] pointed out that one reason for such an oscillation is due to the discretization of the space
differential terms, especially the inter-phasic term pint∇� (the last term in Equation (2)). If we
consider a contact discontinuity moving with constant velocity and constant pressure, one necessary
condition to capture the discontinuity exactly is to discretize the inter-phasic term in a way that all
pressure forces can be canceled, or the so-called non-disturbing pressure condition. By doing so,
the equations can be reduced to a simple convection equation. Otherwise, the residues generated by
the pressure terms will interfere with the flows and cause oscillation when the void fraction varies.

For Ransom’s problem, the flow driven by gravity and pressure is almost unchanged over the
domain. By satisfying the pressure non-disturbing condition, the stratified flow model we used
for discretization is shown to minimize the disturbance caused by pressure terms. However, we
still need additional mechanisms to regularize the flows, such as the interfacial pressure correction
term presented in Equation (2) as noted by Stuhmiller [3].

Figure 2 demonstrates how � takes effect in the simulation. Void function profiles calculated by
different �’s are applied. According to Givler [23], ‘the interfacial pressure is diffusive. . . , it leads
to a homogenizing of the particle concentration field; local increases in particle concentration
produces a momentum flux which opposes the concentration gradient’. When �=0, the two-fluid
model is ill-posed mathematically. Although the wavefront is sharply captured, the oscillation is
still shown in the profile. By increasing �, we find the void fraction profile is smeared, indicating
that diffusive mechanism is able to control the oscillation and regularize the flow effectively. In
Figure 3, the grid independence study is performed. It is shown that the computed results on the
mesh cells of 500 and 1000 are identical. Therefore, we used the 500 grid points for this case. In
addition, the comparison of computed results by the old version as Equations (27), (32) and (36)
and new version as Equations (32) and (40), (41) is demonstrated in Figure 4. It can be found that
the unwanted oscillation around the void fraction wavefront is really reduced by the new version.
In Figure 5, we show the computed time evolution of the void fraction propagation. The result
compares very well with the analytical solution at different times.
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Figure 2. The void fraction profiles based on different �’s in the water faucet problem.

Figure 3. Several different grids are used in the water faucet problem.

1D air–water shock tube problem

Subsequently, we consider the test case described in the papers of Toumi and Kumbaro [22]. The
fluid states in each side of the diaphragm are defined as

(p,�g,ui ,Ti )L=(2.0×107 Pa,0.25,0m/s,308.15K)

(p,�g,ui ,Ti )R=(1.0×107 Pa,0.10,0m/s,308.15K)
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Figure 4. Calculations of the water faucet problem using different versions of AUSM+-up.

Figure 5. Time evolution of the void fraction profile in the water faucet problem.

The simulated results are shown in Figure 6(a) with �=2.0 and Courant–Friedrichs–Lewy
(CFL)=0.5. Several different grids of 100, 500, 1000, 2000 and 4000 cells are used for the
computation. Only the computed results by the new AUSM+-up are demonstrated. We observe
no oscillatory behavior around the results. However, a slight difference between the interfaces in
the resolution of void fraction wave is visible. Also, significant overshoots can be found in the
transition region. Based on the analysis of Toumi, the eigenvalues include two expansion waves,
two contact discontinuity and two shock waves. However, we capture only five distinct regions in
Figure 6(a). However, this is consistent with the numerical results by Chang and Liou [10, 15].
Therefore, all of the shock waves, rarefaction waves and the fluid interfaces are sharply captured.
Only slight oscillation can be found after the shock wave. There is no oscillation in the vicinity
of the fluid interface.
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Figure 6. Profiles of the 1D air–water shock tube problem. The initial conditions are:
(a) (p,�g,ui ,Ti )L=(2.0×107 Pa, 0.25,0m/s,308.15K) and (p,�g,ui ,Ti )R=(1.0×107 Pa,
0.10,0m/s,308.15K) and (b) (p,�g,ui ,Ti )L=(1.0×107 Pa, �,0m/s,308.15K) and (p,�g,

ui ,Ti )R=(5.0×106 Pa,1−�, 0m/s,308.15K).
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Figure 7. Illustration of the shock-water column interaction problem.

Next, we change the initial condition so that the shock wave propagates from the water side to
the air. We have

(p,�g,ui ,Ti )L=(1.0×107 Pa,�,0m/s,308.15 K)

(p,�g,ui ,Ti )R=(5.0×0106 Pa,1−�,0m/s,308.15K)

The results are shown in Figure 6(b) with �=10−6. It is seen that the shock wave transmits
from air into water due to compressibility. However, the shock wave is very difficult to travel from
water into air. Only a small fraction of the shock wave is transmitted into air, and a very strong
rarefaction is generated from the fluid interface and traveling back into the water. It is shown that
the shock wave in the air is smeared, and there is one undershoot in the pressure near the expansion
wave. One possible reason is that the stiffened gas equation of state may not correctly reflect the
water liquid physics. In the real situation, the liquid undergoing a strong expansion wave will be
vaporized into the gas phase if the pressure is dropped under the saturation pressure. However, a
negative pressure is easily obtained while computing the stiffened gas equation of state with the
large pressure-like constant P∞ inside. A more sophisticated and reliable equation of state will be
highly required to avoid numerical instability caused by the estimated negative pressure.

Generally, the new version of the AUSM+-up is shown to capture shock and rarefaction wave
in both air and water flows very well. Accurate and consistent results are presented based on grid
independence study.

2D shock-water column interaction problem

Here, we study a problem of a planar shock wave interacting with one cylindrical water columns.
The configuration is shown in Figure 7. First, we have a planar water column (diameter 6.4mm)
at the origin and the incoming air shock wave at the position x=−4.0mm. The initial condition
is presented as

p=1.0×105 Pa, ui =vi =0m/s, Ti =346.98K
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Figure 8. Time evolution of a shock-water column interaction problem (incoming shock speed is
M=6.0). Contour of void fraction (white color) and pressure contours (other colors): (a) t=1.5�s;
(b) t=4.0�s; (c) t=6.5�s; (d) t=9.0�s; (e) t=11.5�s; (f) t=14.0�s (contours of function

log(|∇�avg|+1) (schlieren photo)).
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Figure 8. Continued.

and the states behind the shock are

p=4.18375×106 Pa, ui =1.818957×103m/s, vi =0m/s, Ti =2755.48K

The Mach number of the incident shock is 6.0, basically an incoming hypersonic shock wave.
The Courant number CFL=0.5 is chosen to maintain numerical stability. The computed results at
transient states are presented in Figure 8. At t=1.5�s, the shock speed of the air is found to be
higher than the shock speed in the water column, despite that the sound speed of water is much
higher than air as shown in Figure 8(a). The flow pattern of the reflected shock is similar to the
shock reflected from a solid cylinder. In Figure 8(b), it is seen that the flow becomes unstable and
the width of the fluid interface increases quickly as the incoming flow approaches the air–water
interface at t=4.0�s. It is observed that the shock within the water finally hits on the fluid interface
in the rear side of the column and reflected as a rarefaction wave. The focused rarefaction waves
create a very low pressure region. As the pressure approaches zero, the air begins to expand and
creates a cavity-like structure in the rear of water column; even air takes only a very small fraction
in our initial conditions (like assuming �g =10−6 within water). The cavity-like structure is shown
inside the water column denoted by white color in pressure contours at t=6.5�s as shown in
Figure 8(c). The area of the gas cavity becomes smaller and smaller as the flow evolves; the
pressure in the cavity also drops dramatically at the same time. A complicated flow structure is
developed in the interface when the air drags the water away from the interface as shown from
Figure 8(c) to (f) (between t=6.5 and 14.0�s). It is shown that the developing interface interacting
with the shock wave in front of the water column continuously creates a ripple-like flow pattern
in the flow field.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:879–896
DOI: 10.1002/fld



TWO-FLUID APPROACH FOR COMPRESSIBLE MULTI-PHASE FLOWS 895

CONCLUSIONS AND SUGGESTIONS

In this work, the new version of AUSM+-up is proposed to simulate multi-phase flows described
by a six-equation two-fluid model with the stiffened gas model. The current scheme has been
demonstrated accurate capturing the liquid pressure waves and the interfaces of the gas–liquid flows.
However, a stiffened gas model is just a rough approximation to the liquid water. The pressure easily
becomes negative when the liquid water flow undergoes a strong expansion wave and a vaporation.
It indicates that a more precise equation of state is highly required for realistic applications.
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